

Sarawak Open Source
Competition, 2006

File Injection and Retrieval
Application version 2

(FIRA2)

Project Summary

Written by:

Full name: Lai Chiong Ching

Nickname: LCC Corps

I.C. number: 850211-13-5185

Postal address: 9B, Lorong Merdeka 15, 96000 Sibu, Sarawak

Email: aurora.lai@gmail.com

Contact number: 019-888-1892 (HP)

Institution name: Curtin University of Technology, Miri, Sarawak

Table of content

Content Page

Author’s details ..2

1. Software license..2

2. Name of software..2

3. Project description...2

4. Brief history..3

5. Main features and functionalities ...3

6. Future enhancements...3

7. Innovative technology used ...4

 PS-1

uthor’s details
Lai Chiong Ching
: 850211-13-5185

he

it.
nyone may redistribute this program under The GNU General Public License (GPL)

2. Name of software
The name of the software has been chosen to be “File Injection and Retrieval Application
version 2” or in short “FIRA2”. The program can inject or hide a file into a standard bitmap file
and safely retrieve it in later time.

3. Project description
This project is a 3-person-month software development in May-July, 2006 for the Sarawak Open
Source Competition. The deliverables of this project includes the working system together with
its source code and all relevant documentation.

The software developed has the capability of hiding/injecting a file into a standard bitmap file.
Extra features like file compression and encryption are planned to be developed as part of the file
hiding process. Additionally, the software will also be able to retrieve back the hidden file,
including extra features like file decryption and decompression. The main ‘key’ used to inject
and retrieve the file is an alpha-numeric password.

The documentations for this project include the Software Requirement Specification, Software
Design Document, Software Test Document as well as the source code itself.

A
Full name:
I.C. number
Postal address: 9B, Lorong Merdeka 15, 96000 Sibu, Sarawak
Secondary address: Lot 2385, Lutong Baru, 98100 Miri, Sarawak
Email: aurora.lai@gmail.com
Contact number: 019-888-1892 (HP)
Institution name: Curtin University of Technology, Miri, Sarawak

1. Software license
These project deliverables, including the program source code, the program itself and all t
accompanying documentations are protected under the open source license, The GNU General
Public License (GPL). This project is free and there is NO ABSOLUTE WARRANTY for
A

 PS-2

4. Brief history
rogram (called “FIRA”) had been developed part-timely in December
 first version of the program is developed mainly for personal interest

 not been participated in any competition.

ped based on the previous version.
a features to the program, to

duce code redundancy.

. Main features and functionalities
ly injects or hides a file into a standard bitmap file. As a result,

 safe from intruders and the hidden file size is limited to one tenth

ith file
ompression/decompression, bigger file can be hidden in standard bitmap file by first
ompressing the file before it is hidden into the carrier file. This feature is most visible especially

pression rate (e.g. standard text file).

for user to select their desired algorithm.

The first version of this p
2005 – January 2006. This
and educational purpose. It has

The second version of this program (called “FIRA2”) is develo
The main purpose of developing “FIRA2” is to add some extr
increase its efficiency and to re

5
The first version of FIRA simp
the hidden file may not be very
of the carrier bitmap file.

However, as of version 2, FIRA2 has been added with some extra features, namely file
compression/decompression as well as file encryption/decryption. W
c
c
while hiding file with very high com

On the other hand, the file encryption/decryption capability is added to increase the security of
the hidden file, which is the main purpose of this program. This file encryption together with the
algorithm to inject the file will make it harder for any unauthorized person to crack and recover

e hidden file. th

6. Future enhancements
The file encryption/decryption algorithm used in FIRA2 is fixed and there is no way for user to
choose their preferred encryption algorithm. Hence, for future enhancement, a list of available
ipher and key generator algorithm can be developed c

Another enhancement which may improve the GUI of this program is to include an image
preview component for file chooser dialog when user is choosing the carrier bitmap file.

 PS-3

7. Innovative technology used
In version 1, FIRA had been developed merely for injecting a file into a standard bitmap file.
The innovative algorithm used is to securely inject a data file into a bitmap file is by utilizing:

rrier file, a blank bit is inserted
into the stream randomly (with fixed probability) to increase the security of the injected
data file

al innovative algorithm such as:

O (optimum value) bits of data into one byte of carrier file, rather
than only injecting one bit per byte as in FIRA version 1.

1. Randomly select (based on password entered) the starting location within the carrier

bitmap file to inject the data file
2. When injecting stream of bytes from data file into the ca

As of version 2, FIRA2 has been developed with addition

1. Increased file injection capacity
a. by using file compression/decompression on the data file
b. by injecting TW

2. Increased injected data file security by utilizing file encryption/decryption on the data

file. .

 PS-4

File Injection and Retrieval
Application version 2

(FIRA2)

Software Requirement Specification
(SRS)

Written by:

Full name: Lai Chiong Ching

Nickname: LCC Corps

Last updated: May 14, 2006

Table of content

Contents Page

1. Purpose ..2

2. Scope ..2

3. Overview..2

4. Product perspective ..2

4.1 Software functions ..2
4.2 File security ..4
4.3 User interface..4

5. User characteristics ..7

6. Constraint and dependencies...7

 SRS-1

1. Purpose
The purpose of this document is to provide all the requirements for FIRA2. This document primarily
discuss about the C-requirement, which is particularly for end-user, but may also be of interest for
programmers.

2. Scope
This document will only cover the requirements in program functions, user interface and security level.

3. Overview
FIRA2 is to enable any file (referred as “data file”) to be injected or hidden into a standard bitmap file
(referred as “carrier file”), as well as to retrieve a hidden file from a carrier file. It must be able to
ensure that the given data file can be injected into the given carrier file first before actually performing
the injection process. Similarly, FIRA2 must be able to detect if a hidden file exists in the given carrier
file first before trying to retrieve the file.

4. Product perspective

4.1 Software functions

Figure SRS.1 – Use-case description for file injection

Inject file

Retrieve
file

Use case Actor

User

Inject file
1. System displays GUI, prompting user

for inputs.
2. User selects the source file (file to be

injected), through file browsing
window.

3. User selects a carrier file (only *.bmp
file supported), through file browsing
window.

4. User enters a password (length between
2-20 characters).

5. User clicks the “Inject” button to start
file injection

Use case details

 SRS-2

Figure SRS.2 – Use-case description for file retrieval

Inject file

Retrieve
file

Use case Actor

User

Retrieve file
1. System displays GUI, prompting user

for inputs.
2. User selects the carrier file with

hidden source file.
3. User enters the correct password.
4. User clicks the “Retrieve” button to

start file retrieval.

Use case details

Figure SRS.3 – Data-flow diagram for file injection

Data file
(any file)

Compress
file Encrypt file

Inject fileCarrier file
(bitmap file)

Raw data
Compressed

data

Compressed
+ encrypted

data

Note: All data are in stream of bytes.
 “raw data” means the original data from source file.

 SRS-3

Figure SRS.4 – Data-flow diagram for file retrieval

In the initial design, it has been made a requirement that the user has the option to enable file
compression or file decryption or both during the file injection process. Then, the file retrieval process
will automatically determined if the injected file is being encrypted or compressed and perform
appropriate file decryption and decompression to retrieve the original data file. The rationale for this
requirement is to speed up the file injection/retrieval process by not performing file
compression/decompression and/or file encryption/decryption.

However, since the file compression/decompression as well as file encryption/decryption is very fast
compared to the file injection/retrieval itself, the requirement has been removed. That is, the user no
longer has the option to enable/disable file compression and/or file encryption. The data file will
always be compressed and encrypted before it is injected into a carrier bitmap file.

4.2 File security
It is required that the hidden data file inside a carrier file is secured from unauthorized person (i.e. the
person that is not meant to have access or password to the hidden data file). Hence, there must be a
built-in file encryption or custom file injection algorithm to increase the hidden data file security.

Besides, the carrier file with a hidden data file must not differ too much from it original file/picture
(without the hidden data file). In other words, both the same carrier file (one with hidden data file, and
the other without) must look exactly the same in human naked eyes. This is to prevent outsiders from
being able to differentiate between the original carrier file and the one with hidden data file.

4.3 User interface
To promote user-friendliness, GUI has been designed and implemented in FIRA2. The GUI layouts are
as shown below. The functions of each components in the GUI is further explained in Software Design
Document, Section 6.2.

Carrier file
(with hidden

file)

Decompress
fileRetrieve file Decrypt file

Retrieved file

Retrieved
original data

Retrieved
data

Compressed
+ encrypted

data

 SRS-4

Figure SRS.5 – GUI layout for the program main frame

File
A “File” menu that

contain “About” and
“Exit” menu item

JTabbedPane containing the panel
for program introduction, file

injection and file retrieval (as in
Figure SRS.6, SRS.7 and SRS.8)

About
Exit “About” menu item to

show brief information
about this program

 “Exit” menu item to exit
this program

Figure SRS.6 – GUI layout showing the “About” panel

RetrieveInject

Exit

…………………………
………………………..

Tabs for selecting
which panel to be

shown

Text area to show the
brief information about

this program

Button to exit this
application

About

An image for
introduction of this

program

 SRS-5

Figure SRS.7 – GUI layout showing the “Inject” (for file injection) panel

Figure SRS.8 – GUI layout showing the “Retrieve” (for file retrieval) panel

Retrieve

About Inject Retrieve

Location of carrier file

Password field

Progress bar

Button for file
browsing

Button to start file
retrieval

Text field to show
file path

Progress bar to show
the task progress

Field for entering
password

Inject

About RetrieveInject

Location of data file

Location of carrier file

Password field

Progress bar

Button for file
browsing

Text field to show
file path

Progress bar to show
the task progress

Field for entering
password

Button to start file
injection

 SRS-6

5. User characteristics
The target user for FIRA2 is people with basic computer knowledge who at least know how to interact
with computer using keyboard and mouse. They need not be very intellect in computer as a user-
friendly GUI has been designed for FIRA2.

6. Constraint and dependencies
FIRA2 has been developed in Window XP Professional Edition. As a result, there is no strong
verification that it may work as expected in some legacy windows. Besides, there is no guarantee that
FIRA2 will work in other platform, like Linux or Mac.

 SRS-7

File Injection and Retrieval
Application version 2

(FIRA2)

Software Design Document
(SDD)

Written by:

Full name: Lai Chiong Ching

Nickname: LCC Corps

Last updated: June 11, 2006

 SDD-1

Table of content

Contents Page

1. Narrative description .. 2

1.1 Data injection .. 2
1.2 Data retrieval... 5
1.3 Overall injection process... 6

2. Flow charts... 7

3. Class hierarchy .. 16

4. Class summary .. 17

5. Pseudo code.. 19

5.1 Password.java.. 19
5.2 MyFile.java ... 21
5.3 FileAccess.java ... 25
5.4 FileCompression.java.. 27
5.5 FileCrypto.java.. 30
5.6 FileInjection.java... 32
5.7 Task.java ... 36

6. GUI design ... 39

6.1 GUI layout... 39
6.2 Object component table... 41

Appendix .. 43

A. Bitmap file format .. 43

 SDD-2

1. Narrative description
In its most simplest form, during file injection, FIRA2 will, in order, compress the original data file, then
encrypt the compressed file and finally inject the compressed and encrypted file into the given carrier
(bitmap) file. The file retrieval process is exactly the reverse of the file injection process: retrieve the
hidden file, then, decrypt the retrieved file and finally decompress the retrieved and decrypted file.

Both the file compression/decompression as well as file cryptography algorithm are being handled by
Java built-in packages. Only the file injection and retrieval algorithm is being developed as there is no
relevant built-in package for it. Hence, the algorithm will be discussed in this section.

1.1 Data injection
An example will be provided as aid in data injection explanation. Consider it is required to inject a String
“abc” (without the double quotes) into a carrier file having its contents as shown in Table 1 in
hexadecimal representation.

Table SDD.1 – The original contents of carrier file before any modification

Address Data
00000000
00000010
00000020
00000030
00000040
...

42 4d 36 4b 00 00 00 00 00 00 36 00 00 00 28 00
00 00 50 00 00 00 50 00 00 00 01 00 18 00 00 00
00 00 00 4b 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 ff 6f de 98 9d 1f 10 99 29 96
32 4e dd ee ba ff ff ff ff ff ff ff ff ff ff ff
...

The ASCII code for each character in the want-to-be-injected String is given in Table 2.

Table SDD.2 – The ASCII code for the characters ‘a’, ‘b’, and ‘c’.

ASCII code Unicode character
Decimal Hexadecimal Binary

a 97 0x61 %0110 0001
b 98 0x62 %0110 0010
c 99 0x63 %0110 0011

The data injection process will proceed byte by byte. In this example, the character ‘a’ will be injected
first and is shown in the following figures. Assume that the character ‘a’ is to be injected starting at
location 0x056 (its value is red highlighted in Table 1).

Data/byte need to be injected: %0110 0001

Figure SDD.1 – Injecting a byte

1. Remove the lowest 2-bit. %1111 11 11 %1111 11 00

2. Get the lowest 2-bits from the
to-be-injected data.

3. Store the 2-bit into the modified
data from carrier file.

%0110 00 01 %0000 00 01

%1111 11 00 %0000 00 01 %1111 11 01 +

4. This is the final data that is written back
(overwrite) the original data 0xff at
address 0x056

Data/byte in the carrier file to store the first chunk of to-be-injected data
Address: 0x056 Data: 0xff or %1111 1111

Figure SDD.2 – Injecting a byte (cont’)

1. Remove the lowest 2-bit. %0110 11 11 %0110 11 00

2. Get the next lowest 2-bits from
the to-be-injected data.

3. Store the 2-bit into the modified
data from carrier file.

%0110 00 01 %0000 00 00

%0110 11 00 %0000 00 00 %0110 11 00 +

4. This is the final data that is written back
(overwrite) the original data 0x6f at
address 0x057

Data/byte in the carrier file to store the next chunk of to-be-injected data
Address: 0x057 Data: 0x6f or %0110 1111

 SDD-3

Figure SDD.3 – Injecting a byte (cont’)

1. Remove the lowest 2-bit. %1101 11 10 %1101 11 00

2. Get the next lowest 2-bits from
the to-be-injected data.

3. Store the 2-bit into the modified
data from carrier file.

%01 10 0001 %0000 00 10

%1101 11 00 %0000 00 10 %1101 11 10 +

4. This is the final data that is written back
(overwrite) the original data 0xde at
address 0x058

Data/byte in the carrier file to store the next chunk of to-be-injected data
Address: 0x058 Data: 0xde or %1101 1110

 SDD-4
Figure SDD.4 – Injecting a byte (last)

1. Remove the lowest 2-bit. %1001 10 00 %1001 10 00

2. Get the last lowest 2-bits from
the to-be-injected data.

3. Store the 2-bit into the modified
data from carrier file.

% 01 10 0001 %0000 00 01

%1001 10 00 %0000 00 01 %1001 10 01 +

4. This is the final data that is written back
(overwrite) the original data 0x98 at
address 0x059

Data/byte in the carrier file to store the last chunk of to-be-injected data
Address: 0x059 Data: 0x98 or %1001 1000

As can be seen, injecting a byte with 2-bits per byte will require 4-bytes of carrier file to accommodate 1-
byte of data file. The same procedure applies for injecting the remaining characters ‘b’ and ‘c’.

After the injection of all the three characters ‘a’, ‘b’, and ‘c’, the contents of carrier file is as shown in
Table 3.

Table SDD.3 – The contents of carrier file with injected text “abc”.
The modified contents are highlighted in yellow.

Address Data
00000000
00000010
00000020
00000030
00000040
...

42 4d 36 4b 00 00 00 00 00 00 36 00 00 00 28 00
00 00 50 00 00 00 50 00 00 00 01 00 18 00 00 00
00 00 00 4b 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 fd 6c de 99 9e 1c 12 99 2b 94
32 4d dd ee ba ff ff ff ff ff ff ff ff ff ff ff
...

1.2 Data retrieval

The data retrieval process is exactly the reverse of the data injection process. For example, if it is required
to retrieve back the injected character ‘a’, the steps are:

1. Get four consecutive bytes from carrier file: fd 6c de 99
2. Retrieve the lowest 2 bits from each byte: 01 00 10 01
3. Rebuild/concatenate back the retrieved data in appropriate order to get back %0110 0001

Figure SDD.5 – Retrieving a byte

01
00
10
01

1. Four consecutive bytes: % 1111 11 01
% 0110 11 00
% 1101 11 10
% 1001 10 01

2. Rebuild back the retrieved data: 01 01 00 10 %

Similar process apply to retrieving characters ‘b’, and ‘c’.

 SDD-5

 SDD-6

1.3 Overall injection process1

 first 60-bytes, header file + allocated margin (untouched) - - - (data continue here if not finish

before ‘END’) -
E E E x S < - - -filename - - - > F < -
- -data - - - - - END

NOTE: One character ‘x’ or ‘-‘ represent a byte in the bitmap carrier file.

S is the start flag of the injection. It signifies the start location where the data file is

injected. The location of this flag is determined solely on the entered password. Hence,
similar password produce similar start location of ‘S’ flag

< filename > The filename of the hidden data file. It has at most 20 characters of name + 3 characters

of file extension, i.e. “name.ext”

F the end flag to signify the end of filename.

< data > The content of the hidden data file

E E E Three consecutive of EOF flag to signify the end-of-file of the hidden data file. The use

of 3 character is to avoid/minimize false flag trigger, especially when injecting bin or
executable file.

END End-of-file for the bitmap carrier file

1 Refer Appendix A to know more about the bitmap file format

2. Flow charts

Create temp file

If data file can
be injected into

carrier file

Perform compression of
data file and name the
resultant, compressed

file to temp

Create temp file

Inject()

END

Rename temp file
to data file

Set data file =
temp file

Perform encryption
of data file to temp

file

Delete data file

Rename temp file
to data file

Set data file =
temp file

Set start inject
flag to true

Perform injection of
data file into carrier

file

Close all file I/O
stream

Delete data file

Set is complete
flag to true

Set start inject flag
to true

Set has error flag
to true

TRUEFALSE

 SDD-7

 SDD-8

Perform file
retrieval process

If the flag returned
by the file retrieval

process == true

Create temp file

Retrieve()

END

Perform decryption
of data file to temp

file

Delete data file

Rename temp file
to data file

Set data file =
temp file

Perform decompres-
sion of data file to

carrier file directory

Delete data file

Set is complete
flag to true

Close all file I/O
stream

Set has error flag
to true

TRUEFALSE

Get the retrieved
data file

Close all file I/O
stream

Zip()

readIn != null
AND

writeOut != null

TRUEFALSE

Call
compressFile ()

Close output zip
stream

END

 SDD-9

Close all file I/O
stream

Create next
ZipEntry object
from data file

Set the next
ZipEntry object to
be compressed

If the data
file is a file

Reach
end-of-file?

Read from data
file

Compress data
and write to zip
output stream

Read next data
from data file

END

TRUEFALSE

TRUE

FALSE

compressFile()

 SDD-10

readIn != null
AND

readIn is a file

Still has ZipEntry
from zip input stream

Get next ZipEntry
object from zip

input stream

Close all file I/O
stream

Call extractFile ()

Unzip()

END

TRUEFALSE

TRUE

FALSE

 SDD-11

Parent != null
AND

Parent not exists

Create all necessary
directory for output file

Reach
end-of-file?

Read data from
zip input stream

and decompress it

Write the decompress
data to file output

stream

Flush remaining
data in file output

stream

Close all file I/O
stream

extractFile()

END

TRUE

FALSE

TRUE

FALSE

 SDD-12

File input AND
output stream not

null?

Initialize
KeyGenerator and

Cipher object

Read data from
data file

Still has
more data?

Encrypt/decrypt
the data

Write encrypted/
decrypted data to
file output stream

Encrypt/decrypt
remaining data

Write and flush the
encrypt/decrypt data
to file output stream

Set success flag
to true

Close all file I/O
stream

doCrypto()

TRUEFALSE

TRUE

FALSE

END

 SDD-13

 SDD-14

Data AND carrier
not null AND can

inject?

Inject start flag

Determine starting
position

Truncate data file
name

Inject data
filename, byte

by byte

Inject filename
flag

Data file reach
end-of-file?

Read a byte from
data file

Inject the byte into
carrier file

Inject end-of-file
flag

Set success flag
to true

doInject()

END

TRUE

FALSE

TRUEFALSE

Determine start
position

Carrier file not
null AND has
hidden file?

Retrieve hidden
file name, byte by

byte

Create new file from the
retrieved filename,

overwrite the file if it
exists beforehand

If data file
is null?

Set data file with
the one just created

Retrieve a byte

Is retrieval
NOT finished?

Write retrieved
byte to file output

stream

Retrieve next byte

Set finish flag to
true

Reach EOF
flag?

Clear start flag

END

TRUEFALSE

doRetrieve()

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

SDD-15

SDD-16

3. Class hierarchy

gui.MainFrame

gui.RetrievePanel
gui.InjectPanel gui.custom.My

FileChoosergui.AboutPanel gui.custom.
FileExtFilter

sys.Task

sys.Password sys.MyFilesys.FileCompression sys.FileInjection sys.FileCrypto sys.FileAccess

sys.MyFile sys.Password

java.io.Filejava.io.Random
AccessFile

java.io.Filejavax.swing.
JPanel

javax.swing.J
FileChooser

javax.swing
.filechooser

.FileFilter

<<extends>> <<extends>>

<<extends>><<extends>> <<extends>>
<<extends>> <<extends>> <<extends>>

 SDD-17

4. Class summary

FileCrypto
- int BUFFER
-String CRY_ALG
-String KG_ALG
-FileInputStream fis

+boolean doCrypto (byte[], int)
+setCryptoAlgorithm (String)
+setKGAlgorithm (String)
+setInputStream (MyFile)
+setOutputStream (MyFile)

FileCompression
-int BUFFER
-MyFile readIn
-MyFile writeOut

+setReadInFile (MyFile)
+setWriteOutDir (MyFile)
+zip ()
+unzip ()
-compressFile (File[], OutputStream)
-extractFile (MyFile, ZipEntry,
 InputStream)

Task
+int INJECT
+int RETRIEVE
-MyFile data
-MyFile carrier
-Password pass
-int mode
-boolean startInject
-boolean isComplete
-boolean hasError

+MyFile getCarrierFile ()
+MyFile getDataFile ()
+boolean hasError ()
+boolean hasStarted ()
+boolean isComplete ()
+run ()
-inject ()
-retrieve ()

FileInjection
+NORM_INJECT_SPEED
+NORM_RETRIEVE_SPEED
-int BIT_PER_BYTE
-int NO_OF_EOF
-int PROBABILITY
-long OFFSET
-byte EOF
-byte START_FLAG
-byte FILENAME_FLAG
-FileAccess data
-FileAccess carrier
-MyFile info
-MyFile vector

+boolean canInject ()
+closeFiles ()
+boolean doInject (long)
+boolean doRetrieve (long)
+MyFile getCarrierFile ()
+MyFile getDataFile ()
+long getMaxLength ()
+long getNextPosition (long,

Random)
+long getStartPosition (long)
+boolean hasInject (long)
+setCarrierFile (MyFile)
+setDataFile (MyFile)

 SDD-18

Password
+int MIN_LENGTH
+int MAX_LENGTH
-byte[] password

+static byte[] cloneBytes
(byte[])

+long getUniqueID ()
+byte[] getPassword ()
+boolean isValid ()
-setPassword (byte[])

java.io.RandomAccessFile

……………

FileAccess

+injectByte (byte, long)
+byte retrieveByte (long)
+boolean eof ()

+int BIT_PER_BYTE
MyFile
+String getExtension ()
+String getParent ()
+MyFile getParentFile ()
+Boolean moveTo (File)
+String removeExt ()
+String renameExt (String)
+MyFile renameTo (String,

boolean)
+MyFile renameTo (MyFile,

boolean)
+String truncateName ()
+static MyFile createTempFile

(String, String,
MyFile)

+static String doubleToFileSize
(double)

java.io.File

……………

 SDD-19

5. Pseudo code

5.1 Password.java

CLASS: Password.java
INHERITS: none
PURPOSE:
The Password class serves to contain password with its properties and behaviours. It
lso provides some necessary methods to verify and manipulate the password. a

PROPERTIES:
 +int MAX_LENGTH
 +int MIN_LENGTH
 -byte[] password

BEHAVIOUR:

+Password (byte[])
 +byte[] cloneBytes (byte[])
 +byte[] getPassword (void)
 +long getUniqueID ()
 +boolean isValid ()

-void setPassword (byte[])

ALGORITHM:

Constructor #1: Password ()
Purpose: to construct a Password object
Import: byte[] pass
Export: none
START
 Invoke setPassword () with pass
END

Module: cloneBytes ()
Purpose: to make a deep copy of a byte array
Import: byte[] source
Export: byte[] target
START
 FOR 1 to source.length – 1, increment by 1, DO
 Set target[i] to source[i]
 END FOR
END

Module: getPassword()
Purpose: to return the password to the calling method
Import: none
Export: byte[] password
START
 Return password
END

 SDD-20

Module: getUniqueID ()
Purpose: to return the unique ID of this Password object
Import: none
Export: long uniqueID
START
 Convert password to String, and initialize the uniqueID to be its hashcode
 DO
 uniqueID *= password[a random int between 0 and password.length]
 uniqueID += password[a random int between 0 and password.length]
 uniqueID /= password[a random int between 0 and password.length]
 uniqueID -= password[a random int between 0 and password.length]
 WHILE nextBoolean() is true
 END DOWHILE

 Set uniqueID to its absolute value
END

Module: isValid ()
Purpose: to test if this Password object is valid or not
Import: none
Export: Boolean isValid
Comment: a valid password is of any character with length between 2 and 20 (inclusive)
START
 Return (MIN_LENGTH <= password.length <= MAX_LENGTH)
END

Module: setPassword()
Purpose: to set a password to this Password object
Import: byte[] pass
Export: none
START
 IF pass != null THEN
 Invoke cloneBytes() with pass, and assign the returned value to password
 END IF
END

 SDD-21

5.2 MyFile.java

CLASS: MyFile.java
INHERITS: java.io.File
PURPOSE:
The MyFile class serve to provide some extra behaviours/methods that are required for
FIRA2 but are not present in the Java built-in package, java.io.File.

PROPERTIES:
 (none)

BEHAVIOUR:

+MyFile (String)
+MyFile (File, String)
+static String doubleToFileSize (double)
+static createTempFile (String, String, MyFile)
+getExtension ()
+String getParent ()
+MyFile getParentFile ()
+boolean move (File)
+String removeExt ()
+String renameExt (String)
+MyFile renameTo (String, boolean)
+MyFile renameTo (MyFile, boolean)

 +String truncateName ()

ALGORITHM:

Constructor #1: MyFile ()
Purpose: to construct a MyFile object
Import: String filename
Export: none
START
 Invoke super() constructor with filename
END

Constructor #2: MyFile ()
Purpose: to construct a MyFile object
Import: File parent file, String child filename
Export: none
START
 Invoke super() constructor with parent and filename
END

Module: createTempFile()
Purpose: to over-ride the super-class method to return MyFile object
 instead of File object
Import: String file name prefix, String file name suffix, MyFile the directory of
 the temporary file to be created
Export: MyFile object for the temporary file created
START
 Invoke createTempFile() from super-class, File with all required parameters
 Create and return the MyFile object describing the just created temp file
END

 SDD-22

Module: doubleToFileSize ()
Purpose: to format a double value to a file size representation in String
Import: double num
Export: String a string representation of num to show the file size
START
 IF (num >= 1000) THEN
 num /= 1000
 set multiplier to “kb”
 END IF

 IF (num >= 1000) THEN
 num /= 1000
 set multiplier to “Mb”
 END IF

 IF (num >= 1000) THEN
 num /= 1000
 set multiplier to “Gb”
 END IF

 Format the num to 2-decimal point and concatenate it with the multiplier
END

Module: getExtension()
Purpose: to return the file extension of this file object
Import: none
Export: a String containing the file extension
START
 Find the last occurrence of the period, ‘.’ in this file name
 IF the index of the last occurrence is greater than 0 THEN
 Return all String after the period, ‘.’
 ELSE
 Return NULL
 END IF
END

Module: getParent ()
Purpose: to return the absolute path of the parent file
Import: none
Export: String parent absolute path
START
 Get the absolute path of this File object
 Find the last index of the absolute pathname separator, ‘/’
 Remove the child filename of this file (left the parent absolute path)
END

Module: getParentFile ()
Purpose: to return the parent File of this File object
Import: none
Export: MyFile parent
START
 Invoke the getParent() method
 Construct a new MyFile object from the returned value of getParent ()
 Return the newly constructed MyFile object
END

 SDD-23

Module: moveTo ()
Purpose: to move this file to specified location, and rename to specified
 specified name
Import: File object, describing the destination location and filename
Export: boolean to determine if the file move is a success or not.
START
 Invoke renameTo() from the superclass with destination File object, and return
END

Module: renameTo()
Purpose: to rename this file and return the new MyFile object, describing the
 newly renamed file
Import: MyFile object, describing the new file name, boolean flag to force rename
 this file or not.
Export: MyFile object for the newly renamed file
Note: When force rename flag is true, the rename process will always be success,
 since if the file already exists prior to file rename, the file will be
 OVERWRITTEN
START
 Invove the rename() with the imported File object name and the force rename
 flag, then return
END

Module: renameTo()
Purpose: to rename this file and return the new MyFile object, describing the
 newly renamed file
Import: the new file name in String, boolean flag to force rename
 this file or not.
Export: MyFile object for the newly renamed file
Note: When force rename flag is true, the rename process will always be success,
 since if the file already exists prior to file rename, the file will be
 OVERWRITTEN
START
 Create a new File object with this file’s parent and the new file name

 IF the file already exists AND force rename THEN
 Delete the file
 END IF

 Invoke the renameTo() in super-class, File with the new File object
 IF rename is success THEN
 Create and return the new MyFile object describing the renamed file
 ELSE
 Return this file object
 END IF
END

Module: renameExt ()
Purpose: to return the filename of this File object with its extension renamed
Import: String new extension
Export: filename with extension renamed
START
 Invoke removeExt (), and assign the returned value to filename
 Concatenate filename with “.” and new file extension
END

 SDD-24

Module: removeExt ()
Purpose: to return the filename of this File object with its extension removed
Import: none
Export: String filename without file extension
START
 Determine the index for the last occurrence of ‘.’
 IF the index is > 0 THEN
 Get and return all the String before the period
 ELSE
 Simply return the file name
 END
END

Module: truncateName ()
Purpose: to set a password to this Password object
Import: none
Export: String shortName
START
 Separate the filename into filename and file extension
 Get the full name of this file
 Get the index of last occurrence of ‘.’ in this filename
 IF no extension THEN
 The name of the file is equals to the full name
 ELSE
 The name of the file is all String before the period, ‘.’
 The extension is all String after the period, ‘.’
 END IF

 IF (filename > MAX_LENGTH) THEN
 Truncate the filename to 20 characters
 END IF

 Return (filename + file extension)
END

 SDD-25

5.3 FileAccess.java

CLASS: FileAccess.java
INHERITS: java.io.RandomAccessFile
BRIEF DESCRIPTION:
To provide methods for injecting and retrieving a byte from a stream of data in bytes.
It is inherited from java.io.RandomAccessFile because it requires some of the
roperties and behaviour from that super-class. p

PROPERTIES:
 +int BIT_PER_BYTE

BEHAVIOUR:

+FileAccess (File, String)
+FileAccess (String, String)
+void injectByte (byte, long)
+byte retrieveByte (long)
+boolean eof ()

ALGORITHM:

Constructor #1: FileAccess ()
Purpose: to construct a FileAccess object
Import: File file, String mode
Export: none
START
 Invoke super() constructor with file and mode
END

Constructor #2: FileAccess ()
Purpose: to construct a FileAccess object
Import: String filename, String mode
Export: none
START
 Invoke super() constructor with filename and mode
END

Module: injectByte ()
Purpose: to inject a byte into a file at the location pointed by pos
Import: byte value, long pos
Export: none
START
 Create the mask for the associate BIT_PER_BYTE.
 e.g. if BIT_PER_BYTE is 2, then mask = %0000 0011
 if BIT_PER_BYTE is 4, then mask = %0000 1111

 FOR 0 to (8/BIT_PER_BYTE)-1, DO
 Set the file pointer to pos
 Read a byte as pointed by the file pointer and assign it to temp
 Mask the BIT_PER_BYTE number of least significant bit of temp to 0,
 the rest remain untouched

 Set temp = temp OR (value AND mask)
 Logical right shift value by 1
 Set the file pointer to pos
 Write temp back to the file

 SDD-26

 Increment pos by one
 END FOR
END

Module: retrieveByte ()
Purpose: to retrieve a byte from a file at the location pointed by pos
Import: long pos
Export: byte retrieved byte
START
 Create the mask for the associate BIT_PER_BYTE.
 e.g. if BIT_PER_BYTE is 2, then mask = %0000 0011
 if BIT_PER_BYTE is 4, then mask = %0000 1111

 Initialize retrieved to 0

 Set the file pointer to pos
 FOR i=0 to (8/BIT_PER_BYTE)-1, DO
 Read a byte as pointed by the file pointer and assign it to temp
 Retrieved = retrieved OR ((temp AND mask) << i*BIT_PER_BYTE)
 END FOR
END

Module: eof ()
Purpose: to determine if end-of-file has been reached or not
Import: none
Export: true if end-of-file is reached, false otherwise
START
 Get the current file pointer
 Return (current file pointer >= file length)
END

 SDD-27

5.4 FileCompression.java

CLASS: FileCompression.java
INHERITS: none
PURPOSE:
To have a class that provides high level access to file compression/ decompression
(also known as file zipping/unzipping), so as to encapsulate all the details for the
file compression/decompression within this class

NOTE: This FileCompression.java is modified slightly from a stand-alone file
zipping/unzipping application written by the author when learning the Java Api in
file zipping/unzipping

PROPERTIES:
 -int BUFFER
 -MyFile readIn
 -MyFile readout

BEHAVIOURS:
 +void setReadInFile (MyFile)
 +void setWriteOutFile (MyFile)
 +void unzip ()
 +void zip ()
 -void compressFiles (File[], ZipOutputStream)
 -void extractFiles (MyFile, ZipEntry, ZipInputStream)

ALGORITHM:

Constructor #1: FileCompression ()
Purpose: to construct the FileCompression object
Import: MyFile object specifying the source file, MyFile object specifying the
 destination directory
Export: none
START
 Invoke setReadInFile () with source file and setWriteOutDir () with
 destination directory
END

Constructor #2: FileCompression ()
Purpose: to construct the FileCompression object
Import: String specifying the source file, String specifying the destination
 directory
Export: none
START
 Invoke constructor #1 with all necessary parameters
END

Module: setReadInFile ()
Purpose: to set the source file for where the zip stream will read from
Import: MyFile object specifying the source file
Export: none
Note: Will only set the file iff it exists.
START
 IF imported MyFile object is not null AND it exists THEN
 Set readIn to be file
 END IF
END

 SDD-28

Module: setWriteOutDir ()
Purpose: to set the output/destination directory to which the zipped files will be
 extracted/decompressed
Import: MyFile object specifying output/destination directory
Export: none
START
 IF imported MyFile object is not null THEN
 Create a new MyFile object with the absolute path described by the
 imported MyFile object.
 Set writeOut to be the newly created MyFile object
 END IF
END

Module: unzip ()
Purpose: to unzip the compressed file(s)
Import: none
Export: none
START
 IF source file (readIn) not null AND readIn is a file THEN
 Create all required zip I/O stream
 Create the destination directory if it does not exists

 WHILE there still has ZipEntry object DO
 Determine the output destination of extracted file
 Invoke extractFiles () with the determined destination file, current
 zip entry object, and zip input stream object
 END WHILE
 END IF
END

Module: extractFiles ()
Purpose: to extract a zipped file, specified by the imported ZipEntry object to
 its specified destination
Import: MyFile object specifying the destination of the extracted file, ZipEntry
 object specifying the file to be extracted, ZipInputStream object
 specifying the input stream for the file extraction
Export: none
START
 IF the parent directory into which the file should be extracted does not
 exists THEN
 Create the directory
 END IF

 WHILE there is still zipped data DO
 Read zipped data stream to buffer and decompress it (done automatically by
 the read() method)
 Write data in buffer to destination file (which is the extracted file)
 END WHILE

 Flush and close file output stream
END

 SDD-29

Module: zip()
Purpose: to zip/compress a file or all files in a directory
Import: none
Export: none
START
 IF source file/directory not null AND destination directory not null THEN
 Invoke compressFiles() with the list of files and ZipOutputStream object

 Close the ZipOutputStream object
 END IF
END

Module: compressFiles ()
Purpose: to compress the given list of files into specified ZipOutputStream object
Import: File object specifying the source file to be compressed, ZipOutputStream
 object for file compression
Export: none
START
 IF source file is a file THEN
 Create the new ZipEntry object for this file
 Put it as next zip entry and compress it (done automatically)

 WHILE still has data to read from files[i] DO
 Read data from files[i] into the buffer
 Write data in buffer to ZipOutputStream and compress the file
 (The file compression is done automatically)
 END WHILE

 Close file input stream from source file
 END IF
END

 SDD-30

5.5 FileCrypto.java

CLASS: FileCrypto.java
INHERITS: none
PURPOSE:
To have a class that provides high level access to file encryption/ decryption, so as
to encapsulate all the details for the file encryption/ decryption within this class

PROPERTIES:

 -int BUFFER
 -String CRY_ALG
 -String KG_ALG
 -FileInputStream fis
 -FileOutputStream fos
 -Cipher c
 -KeyGenerator kg

BEHAVIOUR:
 +void setCryptoAlgorithm (String)
 +void setKGAlgorithm (String)
 +void setInputStream (MyFile)
 +void setOutputStream (MyFile)

+boolean doCrypto (byte[], int)

ALGORITHM:

Constructor #1: FileCrypto ()
Purpose: to construct the FileCrypto object
Import: Myfile source file, MyFile destination file
Export: none
START
 Invoke setInputStream(), setOutputStream(), setCryptoAlgorithm() and
 setKGAlgorithm() with their corresponding parameter
END

Module: setInputStream ()
Purpose: to set the file input stream for this file cryptography
Import: MyFile specifying the source file
Export: none
START
 Create a FileInputStream from imported source file and assign it to fis
END

Module: setOutputStream ()
Purpose: to set the file output stream for this file cryptography
Import: MyFile specifying the destination file
Export: none
START
 Create a FileOutputStream from imported destination file and assign it to fos
END

 SDD-31

Module: setCryptoAlgorithm ()
Purpose: to set the cryptography algorithm for this file cryptography
Import: String representing the cryptography algorithm
Export: none
START
 Create a Cipher instance from Cipher.getInstance() with the imported
 cryptography algorithm
END

Module: setKGAlgorithm()
Purpose: to set the algorithm for the key generator
Import: String specifying the KeyGenerator algorithm
Export: none
START
 Create a KeyGenerator instance from KeyGenerator.getInstance() with the
 imported KeyGenerator algorithm
END

Module: doCrypto ()
Purpose: to actually perform the encryption/decryption task, depending on its mode
 of operation
Import: byte[] specifying the password, int specifying the mode of operation
Export: true if encryption/decryption process succeed, false otherwise
START
 IF file input AND output stream are not null THEN
 Initialize the KeyGenerator with the SecureRandom object using the
 imported password
 Initialize th Cipher object with imported mode and the SecretKey object

 WHILE there is still data to be read by file input stream DO
 Read data from file input stream
 Store the data in buffer
 Encrypt/decrypt the data in buffer
 Write the encrypted/decrypted data from buffer to file output stream
 END WHILE

 // finishing work
 Encrypt/decrypt and finalize the final data in the buffer
 Write and flush the data from buffer to file output stream

 Set the success flag to true

 Close all file I/O stream after finish
 END IF
END

 SDD-32

5.6 FileInjection.java

CLASS: FileInjection.java
INHERITS: none
PURPOSE:
To provide a class that will perform the file injection and retrieval task. It
includes all the required checking before file injection and retrieval.

PROPERTIES:
 +float NORM_INJECT_SPEED
 +float NORM_RETRIEVE_SPEED
 -int NO_OF_EOF
 -int PROBABILITY
 -long OFFSET
 -byte START_FLAG
 -byte FILENAME_FLAG
 -byte EOF
 -MyFile info
 -MyFile vector
 -FileAccess data
 -FileAccess carrier

BEHAVIOUR:
 +boolean canInject ()
 +boolean hasInject (long)
 +boolean doInject (long)
 +boolean doRetrieve (long)
 +long getMaxLength ()
 +long getStartPosition (long)
 +long getNextPosition (long, Random)
 +MyFile getDataFile ()
 +MyFile getCarrierFile ()
 +void setDataFile (MyFile)
 +void setCarrierFile (MyFile)

+void closeFiles ()

ALGORITHM:

Module: canInject ()
Purpose: to check if the given data file can be injected into the given carrier
 file
Import: none
Export: none
START
 Return (data file size < the value returned by getMaxLength())
END

Module: hasInject ()
Purpose: to check if there is any injected file at the position given by the
 imported ID
Import: long specifying the password ID
Export: boolean flag to specify if there is injected file or not
START
 Determine the staring position in the carrier file using the imported ID
 Retrieve a byte at the starting position
 IF the retrieved byte EQUALS the START_FLAG THEN
 There is injected file

 SDD-33

 ELSE
 There is no injected file
 END IF
END

Module: doInject ()
Purpose: to actually perform the file injection task iff it can be performed. This
 means that necessary checking will be done before the file injection
 process starts
Import: long specifying the password ID
Export: true if file injection process succeed, false otherwise
START
 IF data file AND carrier file not null AND injection process can be performed
 (determined by the returned value of canInject()) THEN

 Determine the starting position within the carrier file
 Inject the START_FLAG into carrier file
 Determine next injectible position

 Truncate the data filename
 FOR 0 to (truncated filename length – 1) DO
 Inject the truncated filename into carrier file, one byte by one byte
 Determine next injectible position
 END FOR

 Inject FILENAME_FLAG into carrier file
 Determine the next injectible position

 WHILE data file have not reach end-of-file DO
 Read a byte from data file
 Inject the byte into carrier file
 Determine the next injectible position
 END WHILE

 FOR 0 to (NO_OF_EOF - 1) DO
 Inject EOF into carrier file
 Determine next injectible position
 END FOR

 Set success flag to true
 END IF
END

Module: doRetrieve ()
Purpose: to perform the actual file retrieval process iff there exist a hidden
 file in the specified carrier file. There will be necessary checking
 before the file retrieval process is performed
Import: long specifying the password ID
Export: true if retrieval process succeed, false otherwise
START
 Determine the start position from the imported password ID

 IF carrier file is not null AND there is injected file in carrier file THEN
 // retrieve injected filename
 Determine the next position (to skip the START_FLAG)
 Retrieve the first byte
 WHILE FILENAME_FLAG not encountered yet DO
 Concatenate retrieved byte to the filename
 Determine next position

 SDD-34

 Retrieve next byte for the filename
 END WHILE

 IF data file is null THEN
 Create the data file from the retrieved filename, overwrite if the
 file already exists beforehand
 Set the data file to this newly created file
 END IF

 Determine next position
 Retrieve a byte
 WHILE have not finish retrieving the hidden file DO
 Write the retrieve byte to output/destination file
 Determine next position
 Retrieve a byte
 Determine if hidden file has retrieved completely
 END WHILE

 Reset/Delete the START_FLAG
 END IF
END

Module: getMaxLength ()
Purpose: to calculate the max file size for a data file to be safely injected to
 the given carrier file
Import: none
Export: long specifying the max length
START
 Return (carrier file size - OFFSET)/(8/BIT_PER_BYTE + 2)
END

Module: getStartPosition ()
Purpose: to determine the staring position for file injection/retrieval based on
 imported password ID
Import: long specifying password ID
Export: long specifying the starting posiiton
START
 Start = (Imported ID % (value returned by getMaxLength())*8/BIT_PER_BYTE)
 + OFFSET
END

Module: getNextPosition ()
Purpose: to determine the next position for file injection and retrieval
Import: long specifying current position, Random object to generate a random int
Export: long specifying next position
START
 Next position = current position + 8/BIT_PER_BYTE
 + (a random int between 0-10)/PROBABILITY

 IF next position >= (the carrier file size - 8/BIT_PER_BYTE) THEN
 Set the next position to OFFSET
 END IF
END

 SDD-35

Module: getDataFile ()
Purpose: to return the data file object
Import: none
Export: MyFile specifying the data file for this FileInjection object
START
 Return info
END

Module: getCarrierFile ()
Purpose: to return the carrier file object
Import: none
Export: MyFile specifying the carrier file for this FileInjection object
START
 Return vector
END

Module: setDataFile ()
Purpose: to set the source/data file
Import: MyFile specifying the source/data file
Export: none
START
 IF imported source/data file not null THEN
 data = new FileAccess object created from imported data file
 info = imported data file
 END IF
END

Module: setCarrierFile ()
Purpose: to set the carrier file
Import: MyFile specifying the carrier file
Export: none
START
 IF imported carrier file not null THEN
 carrier = new FileAccess object created from imported carrier file
 vector = imported carrier file
 END IF
END

Module: closeFiles()
Purpose: to close all the file I/O streams
Import: none
Export: none
START
 IF data file is not null THEN
 Close the data file stream

 IF carrier file is not null THEN
 Close the carrier file stream
END

 SDD-36

5.7 Task.java

CLASS: Task.java
INHERITS: java.util.Thread
PURPOSE:
To combine all the 2x3 process for FIRA2, i.e.

1. For file injection
Process: file compression, file encryption and file injection;

2. For file retrieval
Process: file retrieval, file decryption and file decompression

PROPERTIES:
 +int INJECT
 +int RETRIEVE
 -MyFile data
 -MyFile carrier
 -Password pass
 -int mode
 -boolean startInject
 -boolean isComplete
 -boolean hasError

BEHAVIOUR:
 +void run ()
 -void inject ()
 -void retrieve ()
 +MyFile getDataFile ()
 +MyFile getCarrierFile ()
 +boolean hasStarted ()
 +boolean isComplete ()
 +boolean hasError ()

ALGORITHM:

Module: run ()
Purpose: to perform a task in separate thread
Import: none
Export: none
START
 IF operation mode is INJECT THEN
 Invoke inject()
 ELSE IF operation mode is RETRIEVE THEN
 Invoke retrieve()
 END IF
END

Module: inject ()
Purpose: to combine all the required process for file injection
Import: none
Export: none
START
 Create a temp file
 Perform file compression of data (original) file to the temp file just created
 Rename the temp file to the data file (only change the file name, the location
 of the temp file remains)

 Determine if the compressed file can be injected into the given carrier file

 SDD-37

 IF can THEN
 Create another temp file
 Perform file encryption of data (not original, but is the compressed file
 from previous file compression process) file to temp file
 Delete the data file
 Rename the temp file to data file

 Set startInject flag to true

 Perform file injection of data file into given carrier file
 ELSE
 Set startInject flag to true
 Set hasError flag to true
 END IF

 Set the isComplete flag to true
END

Module: retrieve ()
Purpose: to combine all the required process for file retrieval
Import: none
Export: none
START
 Retrieve the hidden data file from given carrier file

 IF the hidden file is successfully retrieved THEN
 Get the data file from FileInjection object
 Close all file I/O stream for the FileInjection object

 Create a temp file
 Perform decryption of data (retrieved data) file to temp file
 Delete the data file
 Rename temp file to data file

 Perform the file decompression to the same directory as the carrier file
 Delete the data file (this data file IS NOT the decompressed file, but is
 the compressed file after the file decryption process)
 ELSE
 Close all file I/O stream for the FileInjection object
 Set hasError flag to true
 END IF

 Set isComplete flag to true
END

Module: getDataFile ()
Purpose: to return the data file of this Task object
Import: none
Export: MyFile data file
START
 Return data file
END

 SDD-38

Module: getCarrierFile ()
Purpose: to return the carrier file of this Task object
Import: none
Export: MyFile carrier file
START
 Return carrier file
END

Module: hasStarted ()
Purpose: to determine if the file injection process has started (exculsive of file
 compression and encryption process). It is used to update the progress
 bar in the GUI
Import: none
Export: boolean flag specifying if the file injection process has started or not
START
 Return startInject
END

Module: isComplete ()
Purpose: to determine if the overall task has been completed or not (a finish task
 is a task that has been completed its execution, regardless if it is
 successful of failure)
Import: none
Export: boolean flag specifying the task completion
START
 Return isComplete
END

Module: hasError ()
Purpose: to determine if the task has finished with error or not
Import: none
Export: boolean flag specifying if an error exist or not
START
 Return hasError
END

6. GUI design

6.1 GUI layout

Figure SDD.6 – GUI layout for the main frame

File
A “File” menu that

contain “About” and
“Exit” menu item

JTabbedPane containing the panel
for program introduction, file

injection and file retrieval (as in
Figure SDD.7, SDD.8 and SDD.9)

About
Exit “About” menu item to

show brief information
about this program

 “Exit” menu item to exit
this program

 SDD-39

 SDD-40

Figure SDD.7 – GUI layout showing the “About” panel

Figure SDD.8 – GUI layout showing the “Inject” (for file injection) panel

Inject

About Inject Retrieve

Location of data file

Location of carrier file

Password field

Progress bar

Button for file
browsing

Button to start file
injection

Text field to show
file path

Progress bar to show
the task progress

Field for entering
password

Exit

…………………………
………………………..

About Inject Retrieve

Tabs for selecti g n
which panel to be

shown

Text area to show the
brief information about

this program

Button to exit this
application

An image for
introduction of this

program

 SDD-41

Figure SDD.9 – GUI layout showing the “Retrieve” (for file retrieval) panel

6.2 Object component table

Table SDD.4 – Components for MainFrame

Object name Class (type) Functions

fileMenu JMenu - to contain the aboutItem and exitItem JMenuItem
aboutItem JMenuItem - to display brief information about this program
exitItem JMenuItem - to exit this program
tabPane JTabbedPane - to contain all the aboutPanel, injectPanle and retrievePanel of

the program
aboutPanel AboutPanel - custom panel that contains all the component for the

introduction panel of the program
injectPanel InjectPanel - custom panel that contains all the components for the file

injection GUI
retrievePanel RetrievePanel - custom panel that contains all the components for the file

retrieval GUI

Retrieve

About Inject Retrieve

Location of carrier file

Password field

Progress bar

Button for file
sing brow

Button to start file
retrieval

Text field
file p

Progress bar to show
ro

 to show
ath

the task p gress

Field for entering
password

 SDD-42

Table SDD.5 – Components for AboutPanel

Object name Class (type) Functions
label JLabel - to display the introduction icon for this program
textArea JTextArea - to show some brief information about this application
exit JButton - to exit the application

Table SDD.6 – Components for InjectPanel

Object name Class (type) Functions
fileDisplayData JTextField - to display the selected data file from the file chooser
fileDisplayCarrier JTextField - to display the selected carrier file from the file chooser
browseData JButton - to open up the file chooser dialog for selecting a data file
browseCarrier JButton - to open up the file chooser dialog for selecting a carrier file
passField JPasswordField - the field for user to enter a password
pb JProgressBar - to show the user about the current status of a running task
inject JButton - to start the file injection task
fc MyFileChooser - provide GUI for user to select a file

Table SDD.7 – Components for RetrievePanel

Object name Class (type) Functions
fileDisplayCarrier JTextField - to display the selected carrier file from the file chooser
browseCarrier JButton - to open up the file chooser dialog for selecting a carrier file
passField JPasswordField - the field for user to enter a password
pb JProgressBar - to show the user about the current status of a running task
retrieve JButton - to start the file retrieval task
fc JFileChooser - provide GUI for user to select a file

 SDD-43

Appendix

A. Bitmap file format

In a standard bitmap file, the first 54 bytes are the bitmap header information and must not be modified to
avoid bitmap corruption. For example, a 80 x 80 pixels blank (all white) bitmap file has the following
data in hexadecimal, as shown in Table A.1.

Table A.1 – Content of a carrier bitmap file in hexadecimal representation

Address Data
00000000
00000010
00000020
00000030
00000040
...

42 4d 36 4b 00 00 00 00 00 00 36 00 00 00 28 00
00 00 50 00 00 00 50 00 00 00 01 00 18 00 00 00
00 00 00 4b 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
...

From Table A.1, the first 54 bytes are the heard information for the bitmap file. The header file contains
the type of the file, the height and width of the bitmap image and so on. The actual colour data starts with
the first ‘ff’ value. As long as the header information is not illegally modified (modified externally), the
bitmap file will not corrupt. As of FIRA2, it is actually the colour data that is being modified to inject a
file.

File Injection and Retrieval
Application version 2

(FIRA2)

Software Test Document
(STD)

Written by:

Full name: Lai Chiong Ching

Nickname: LCC Corps

Last updated: July 18, 2006

 STD-1

Table of content

Contents Page

1. Test design specification ..2

1.1 PasswordTestCase..2
1.2 MyFileTestCase ...3
1.3 FileAccessTestCase ...4
1.4 FileCompressionTestCase..4
1.5 FileCryptoTestCase..4
1.6 FileInjectionTestCase...5
1.7 TaskTestCase ...6

2. Test procedure ..6

2.1 Unit testing...6
2.2 System and Regression test..6
2.3 Acceptance test...6

3. Test result..7

3.1 PasswordTestCase..7
3.2 MyFileTestCase ...8
3.3 FileAccessTestCase ...9
3.4 FileCompressionTestCase..9
3.5 FileCryptoTestCase..9
3.6 FileInjectionTestCase...10
3.7 TaskTestCase ...11

4. Test summary ...11

 STD-2

1. Test design specification

Each major class (excluding the GUI class) for FIRA2 has been incorporated with their own unit test class.
The FIRA2 major classes with their corresponding unit test class are as shown in Table STD.1. Table
STD.1 also shows the corresponding test method developed to test the methods in the major class.

Table STD.1 – Major classes in FIRA2 with their test class

Major class Unit test class
Password.java PasswordTestCase.java
MyFile.java MyFileTestCase.java
FileAccess.java FileAccessTestCase.java
FileCompression.java FileCompressionTestCase.java
FileCrypto.java FileCryptoTestCase.java
FileInjection.java FileInjectionTestCase.java
Task.java TaskTestCase.java

1.1 PasswordTestCase

1.1.1 testPasswordConstrutor()
This test method is to test if the Password object has been constructed as expected. The test is performed
by constructing a Password object using a prototype array of byte. Then, get the password using the
Password object and compared with the prototype.

1.1.2 testCloneBytes()
This test method is used to test the cloneBytes() in Password.java. The test is done by copying a prototype
array of byte and then compared them both (the prototype and the copied).

1.1.3 testGetUniqueID()
This test method is to test the getUniqueID(). There are two cases in this test. The first case of the test is
performed by constructing two similar Password object and compare their corresponding unique ID. The
second case is to create two different Password object and compare their corresponding unique ID.

1.1.4 testIsValid()
This test method is to test the isValid(). There are three cases in this test, namely to test the validity of a
valid password (with length 2-20 characters) and two invalid passwords (with length less than 2 and
greater than 20 characters).

 STD-3

1.2 MyFileTestCase

1.2.1 testGetExtension()
This test is performed by creating a MyFile object with a dummy filename and a prototype extension.
Then, the file extension from MyFile object is being compared with the prototype.

1.2.2 testGetParent()
This test is performed by first creating a MyFile object. Then, the String returned my the getParent() is
being compared with the String returned by the getAbsolutePath() with the filename removed.

1.2.3 testGetParentFile()
This test need the getParent() to work as expected. The test is done by comparing the MyFile object
returned by the getParentFile() with the new MyFile object created from the String returned by the
getParent().

1.2.4 testRemoveExt()
This test is performed by creating a MyFile object with a prototype filename (without extension) and a
dummy file extension. Then, the value returned by the removeExt() will be compared with the prototype
filename.

1.2.5 testRenameExt()
This test is performed by creating a MyFile object with a dummy filename and an old file extension. Then,
the value returned by the renameExt(new extension) is compared with the concatenation of dummy
filename and new extension.

1.2.6 testRenameTo()
This test is done by creating two different MyFile object (and make sure that both of the files do exists).
Then, the first file is being renamed to the second file. After that, both the MyFile object is being
compared.

1.2.7 testTruncateName()
This test is performed by first creating a MyFile object with a very long filename (more than 20 characters
long). Then, compare the value returned by truncateName() with the the one manually truncated (using
substring()).

 STD-4

1.3 FileAccessTestCase

1.3.1 testEOF()
There are two cases associated with this test. The first test is to purposely make the FileAccess object
reach end-of-file by using the seek() and compared the value returned by eof() with the expected result.
The second case is to use the seek() to NOT causing the end-of-file, and compare the result with expected
value.

1.3.2 testInjectByte()
This test is done by injecting a test byte into a test file. Then, all (only four) the bytes that contain the
information of the injected test byte is read into a buffer, and have the original byte rebuilt back. Then, the
rebuilt byte is compared with the original byte.

1.3.3 testRetrieveByte()
This test need the injectByte() in FileAccess to be working properly. The test is done by injecting a test
byte using the injectByte(). Then, the injected byte is retrieved back using the retrieveByte() and has its
returned value compared with the original value.

1.4 FileCompressionTestCase

1.4.1 testZip()
This test method is to test both the zip() and compressFile() in FileCompression since both of them are
related. The test is done by compressing a file using the zip(). Then, the zip entry is obtained from the
resulting compressed file and is compared with the original test file (Note that only their file name is
being compared. Besides, the resulted compressed file can be opened using any zip tools, like WinZip or
WinRAR).

1.4.2 testUnzip()
This test method is to test the unzip() and the extractFile() in FileCompression. This test method uses the
resulted compressed file from testZip(). It will decompress the file and then compare the decompressed
file content with the original file content.

1.5 FileCryptoTestCase
In order to test the output for encrypted and decrypted file, a stand-alone application related to file
encryption/decryption is required. This stand-alone application has already been written by the author
during the development of FIRA2 as part of self-learning about javax.crypto.* packages. From this stand-
alone application, a test file and its encrypted file are used as comparison samples.

 STD-5

1.5.1 testEncrypt()
This test is done by encrypting a file using the doCrypto() in FileCrypto. The output, encrypted file
content is being compared with the comparison sample mentioned above.

1.5.2 testDecrypt()
This test is done by decrypting an encrypted file using the doCrypto() in FileCrypto. The output,
decrypted file content is being compared with the comparison sample mentioned above.

Once both testEncrypt() and testDecrypt() is successful, they can be modified to encrypt a test file, and
then decrypt it. The output file (from file decryption) is then compared with the original test file (before
file encryption).

1.6 FileInjectionTestCase

1.6.1 testGetMaxLength()
The only test for getMaxLength() is to test that the returned value is a positive numbers (never a negative
value).

1.6.2 testGetStartPosition()
This test is to determine that the value returned by getStartPosition() is always between 60 to max length
(inclusively). The value of max length is determined by getMaxLength().

1.6.3 testGetNextPosition()
This test is to determine that the value returned by getNextPosition() will be between 60 to max length
(inclusively), and that the values will not overlap one another.

1.6.4 testCanInject()
This test is done by comparing the result/value returned by canInject() with the expected value. There are
two cases associated with this test. The first case is to have a small data file with sufficiently large carrier
file so that the data file can be injected. The second case is to have a very large data file so that it cannont
be injected.

1.6.5 testHasInject()
The test is done by comparing the value returned by hasInject() with expected value. The three cases
related to this test are:

1. a carrier file with hidden file AND correct password
2. a carrier file with hidden file BUT with wrong password
3. a carrier file without any hidden file (password is unrelevant)

 STD-6

1.7 TaskTestCase

1.7.1 testInjectRetrieve()
This test method will test both doInject() and doRetrieve(). The test is performed by first inject a test file
into a dummy carrier file. Then, the hidden test file is retrieved from the dummy carrier file. The content
of the retrieved test file is compared with the content of the original test file.

2. Test procedure

2.1 Unit testing

The development method adopted for FIRA2 is hierarchical development1. Hence, the unit test has been
carried out in parallel to the FIRA2 development. In other words, as a method is being developed, its
corresponding unit test is also developed to test the method. Only after the unit test succeeds then the next
method required for FIRA2 is being developed. The purpose of adopting this test procedure is to enable
early bug/error detection before the bug/error creep deeper into the program. Most of the test performed is
only black-box and gray-box testing.

2.2 System and Regression test
Once the first workable FIRA2 is completed, it is being run and modified multiple times to correct some
minor tweaks as well as to remove some redundant code. Hence, during this phase, regression test is
being vigorously performed to ensure that the modification will not cripple the program and the program
will continue to work as expected.

2.3 Acceptance test
Once the FIRA2 program has been finalized (no more modification to its source codes), acceptance test
will be performed to determine that FIRA2 will perform according to its requirements as stated in SRS.

1 In hierarchical development, all the small components/classes at the bottom of the hierarchy are being developed first before
they are combined to form a larger component at the top of hierarchy and finally form a complete program.

 STD-7

3. Test result

3.1 PasswordTestCase

=== Test cloneBytes() ===
result = abc@123
expected = abc@123
testCloneBytes().....OK

=== Test PasswordConstructor() ===
result = 0123456789abcdefghijklmno
expected = 0123456789abcdefghijklmno
testPasswordConstructor().....OK

=== Test isValid() ===
Test #1:
result = true
expected = true
testIsValid().....OK

Test #2:
result = false
expected = false
testIsValid().....OK

Test #3:
result = false
expected = false
testIsValid().....OK

=== Test getUniqueID() ===
Test #1: Similar ID
result = true
expected = true
testGetUniqueID().....OK

Test #2: Different ID
result = false
expected = false
testGetUniqueID().....OK

 STD-8

3.2 MyFileTestCase

=== Test removeExt() ===
result = test0123456789abcdefghijklmnopqrstuvwxyz
expected = test0123456789abcdefghijklmnopqrstuvwxyz
testRemoveExt ().....OK

=== Test renameExt() ===
result = test0123456789abcdefghijklmnopqrstuvwxyz.datum
expected = test0123456789abcdefghijklmnopqrstuvwxyz.datum
testRenameExt ().....OK

=== Test truncateName() ===
result = test0123456789abcdef.dat
expected = test0123456789abcdef.dat
testGetShortName ().....OK

=== Test getParent() ===
result = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testMyFile
expected = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testMyFile
testGetParent().....OK

=== Test getParentFile() ===
result = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testMyFile
expected = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testMyFile
testGetParentFile().....OK

=== Test renameTo() ===
Before rename = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testFileInjection\abc.txt
After rename = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testFileInjection\hello.world
Target rename = C:\Documents and Settings\aurora.lai\Desktop\My
Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testFileInjection\hello.world
testRenameTo().....OK

=== Test getExtension() ===
result = dat
expected = dat
testGetExtension().....OK

 STD-9

3.3 FileAccessTestCase

=== Test eof() ===
Test 1
result = true
expected = true
testEOF ().....OK
Test 2
result = false
expected = false
testEOF ().....OK

=== Test injectByte() ===
Result :
 1 1 1 0 1 0 1 0
Expected :
 1 1 1 0 1 0 1 0
result = 87
Expected = 87
testInjectByte ().....OK

=== Test retrieveByte() ===
Result :
 0 1 0 1 0 1 1 0
Expected :
 0 1 0 1 0 1 1 0
result = 106
expected = 106
testRetrieveByte ().....OK

3.4 FileCompressionTestCase

==* Test zip() a single file *=*=*

=== Test zip() ===
Result :test.bmp
Expected :test.bmp

testZip().....OK

==* Test unzip() file to "testUnzip" folder *=*=*

=== Test unzip() ===
Checking the content of extracted file against the original file before the
compression...
testUnzip().....OK

3.5 FileCryptoTestCase

=== Test decrypt() ===
Contents of encrypted file and expected sample file are the SAME.
testEncrypt().....OK

=== Test decrypt() ===
Contents of decrypted file and expected sample file are the SAME.
testDecrypt().....OK

 STD-10

3.6 FileInjectionTestCase

=== Test getStartPosition() ===
startPos = 160 (between 60-6000): true
testGetStartPosition().....OK

=== Test getNextPosition() ===
Test with 100 sample (generated automatically)
nextPos = 65 (between 60-6000): true
nextPos = 69 (between 60-6000): true
nextPos = 74 (between 60-6000): true
nextPos = 80 (between 60-6000): true
nextPos = 84 (between 60-6000): true
............
nextPos = 524 (between 60-6000): true
nextPos = 530 (between 60-6000): true
nextPos = 535 (between 60-6000): true
nextPos = 540 (between 60-6000): true
nextPos = 544 (between 60-6000): true
testGetNextPosition().....OK

=== Test getMaxLength() ===
maxLength = 660 (greater than zero): true
testGetMaxLength().....OK

=== Test canInject() ===
Test #1: Able to be injected (with small file)
result = true
expected = true
testCanInject().....OK

Test #2: Unable to be injected (with big file)
result = true
expected = true
testCanInject().....OK

=== Test hasInject() ===
Test #1: With injected file
result = true
expected = true
testHasInject().....OK

Test #2: With injected file (but wrong password)
result = false
expected = false
testHasInject().....OK

Test #3: Without injected file
result = false
expected = false
testHasInject().....OK

=== Test doInject() AND doRetrieve() ===
The original data file: test.txt
The retrieved file: retrieved.txt
The content of original and retrieved file is same: true
Test doInject() AND doRetrieve().....OK

 STD-11

3.7 TaskTestCase

=== Test inject() AND retrieve()===
NOTE: This test may take a while to complete...
The original test file: src\testcase\testFile\testTask\original\data.txt
The retrieved file: C:\Documents and Settings\aurora.lai\Desktop\
 My Works\SOSC\FIRA2\GUI\FIRA2\src\testcase\testFile\testTask\data.txt
The content of original and retrieved file are SAME.
testInjectRetrieve().....OK

4. Test summary
All the tests have been performed by the author, LCC Corps, along with the development of FIRA2.

File Injection and Retrieval
Application version 2

(FIRA2)

User Manual

Written by:

Full name: Lai Chiong Ching

Nickname: LCC Corps

Last updated: July 22, 2006

 UM-1

Table of content

Contents Page

Preface.. 2

1. Introduction... 2

2. Requirement .. 2

3. Installation ... 3

4. Executing the application ... 3

4.1 Running the application .. 3
4.2 Injecting a file ... 4
4.3 Retrieving a hidden data file ... 7

Troubleshooting/FAQ... 10

Contact ... 10

 UM-2

Preface
The original idea for this application is obtained from the article Hiding a text file in bmp file by Ahmed
Osama (Adore C++), at http://www.codeproject.com/cpp/HideIt.asp and from Hide a file in a BMP file
(plus) by Neil Xu at http://www.codeproject.com/cpp/HideIt2.asp.

This application is developed solely for educational purpose and of personal interests. Illegal misuse of
this application by anyone is by NO means liable to the author.

1. Introduction
From times to times, people often require some means to convey their private messages or files to their
friends or other acknowledged recipients. Although presently, there exist many applications that offers
file encryption and password protection, these software lack of one feature, that is the ability of conveying
data (files) without catching the attention of the prying eyes.

Therefore, this application ‘File Injection and Retrieval Application’ version 2 or FIRA2 in short has been
developed to solve this lack. It is capable of injecting data files into a carrier file (a bitmap image file).
The carrier file containing the data file is completely indistinguishable by naked eyes, thus enable data to
be conveyed without anyone’s attention. Besides, the carrier file is also password protected, which
required the authorized recipient to enter the correct password in order to retrieve the hidden data file in
the carrier file.

2. Requirement
Minimum requirement:
Pentium II 200MHz
Window 98
64 MB RAM memory
2 MB hard disk space
♣Installed Java SDK 1.4

Recommended requirement:
Pentium III 500MHz or above
Window 98, Window 2000 or Window XP
128 MB RAM memory or above
2 MB hard disk space
♣Installed Java SDK 1.4.2 or above

♣ Latest version of Java SDK can be obtained from java.sun.com

3. Installation
This project is zipped into a single file called FIRA2.zip. Within FIRA2.zip, there will be a “Program”
folder, “Source code” folder and “Documentation” folder. To install the application, simply use WinZip
(www.winzip.com) or WinRAR (www.winrar.com) to unzip FIRA2.zip to a folder named FIRA2. The
actual program will be located in /FIRA2/Program folder.

4. Executing the application

4.1 Running the application
To executing FIRA2, simply go to the “Program” folder and double-click the “fira2.bat” to execute the
program. It may take a while for the program to load. After that, the program window will be shown, as in
Figure ???.

Figure UM 1 – The main window for FIRA2

 UM-3

http://www.winzip.com/
http://www.winrar.com/

4.2 Injecting a file
Once the application is successfully executed, click on the “Inject” tab.

Click to select
the data file

Figure UM 2 - The file injection panel for FIRA2, to select a data file

Then select the data file that you wish to be injected/hidden in the carrier file by clicking file browsing
button. Then, a file chooser window will appear for the user to select the data file.

Figure UM 3 - File chooser window to select data file

 UM-4

After selecting the data file from the file chooser window, click the “Open” button.

Click to select
the carrier file

Figure UM 4 - Select a carrier file

Next, select a bitmap (carrier) file by clicking the file browsing button. Similarly, a file chooser window
will appear where you can select a bitmap file as the carrier file.

Figure UM 5 - File chooser window to select a carrier file

When finish selecting the carrier file, click ‘Open’.

 UM-5

Enter a
password

Figure UM 6 - Enter desired password and ready for file injection

Then, enter your desired password in the provided field. The password needs to be between 2 to 20
characters long. Finally click the ‘Inject’ button to start the file injection process. When the file injection
task has completed, a confirmation window will popup to inform you that the process is completed.

Figure UM 7 - Acknowledgement dialog on the completion of

file injection process

If the file injection fails, the only reason may be that the data file size exceeds the injection capacity of the
carrier file, meaning that the selected data file is too big to be injected into the selected carrier file. An
error message will be shown to user if this failure occurs.

 UM-6

Figure UM 8 - Error message for file injection failure

Note that the indicated file size is only an estimate, since this program has the capability of file
compression/decompression. As an example, for a text file with very high compression rate, a text file
with file size of 3.0 mega-bytes can be safely injected into a bitmap file of only 300 kilo-bytes.

4.3 Retrieving a hidden data file
Click the ‘Retrieve’ tab.

Click to select
the carrier file
with hidden
data file

Figure UM 9 - File retrieval panel for FIRA2

Click the file browsing to select the carrier bitmap file containing the hidden data file.

 UM-7

Figure UM 10 - File chooser window for selecting a carrier file

After finish selecting the carrier file with the hidden data file, click the ‘Open’ button.

Enter correct
password for
file retrieval

Figure UM 11 - Enter correct password and ready for file retrieval

Next, enter the correct password and click the ‘Retrieve file’ button to begin hidden file retrieval process.
Once the file retrieval process has completed, a confirmation window will appear.

 UM-8

Figure UM 12 - Acknowledgement dialog upon successful file retrieval process

If the file retrieval fails, there may only be two reasons for it.

1. An incorrect password is entered OR
2. The selected carrier bitmap file DOES NOT contain any hidden data file.

An error message dialog will appear to acknowledge the user about this failure.

Figure UM 13 - Error message for file retrieval failure

 UM-9

 UM-10

Troubleshooting/FAQ

Q1: Can other file types (e.g. *.jpg, *.gif, etc) be selected as carrier file?
A1: NO. This application is design to only utilize bitmap file (*.bmp) as carrier file.

Q2: What is a valid password to be used?
A2: A valid password is of any character, but must be between 2-20 characters in length.

Q3: I already retrieved the hidden data file from a carrier file, but I accidentally delete it (the retrieved

file). I cannot retrieve the hidden data file again. Why?
A3: This application is design to enable only ONE successful retrieval per carrier file. That means for a

carrier file, you can only retrieve the hidden data file once (successfully). After that the data is erased.
The reason for this design is for security purpose.

Q4: I follow the maximum file size of the data file that can be injected, but I still get the same error

message asking me to select a smaller data file. Why?
A4: The maximum data file size shown by the application is ONLY an estimation. It may NOT be 100%

accurate. A good rule of thumb is to inject a data file that is 6 TIMES less than the carrier file. For
example, if the carrier file is 3.0 Mb, then the data file should be best being at most 500 kb.

Q5: I finish retrieved the hidden data file successfully, but where is the file?
A5: The file is saved, by default, in the same directory as the selected carrier file.

Contact
For any comments, feedbacks and reporting bugs, please email to the author ‘LCC Corps’ at
aurora.lai@gmail.com.

	##1_Project summary.pdf
	Author’s details
	1. Software license
	2. Name of software
	3. Project description
	4. Brief history
	5. Main features and functionalities
	6. Future enhancements
	 7. Innovative technology used

	##2_Software Requirement Specification.pdf
	 1. Purpose
	2. Scope
	3. Overview
	4. Product perspective
	4.1 Software functions
	4.2 File security
	4.3 User interface
	5. User characteristics
	6. Constraint and dependencies

	##3_Software Design Document.pdf
	 1. Narrative description
	1.1 Data injection
	1.2 Data retrieval
	1.3 Overall injection process
	 2. Flow charts
	3. Class hierarchy
	4. Class summary
	 5. Pseudo code
	5.1 Password.java
	 5.2 MyFile.java
	 5.3 FileAccess.java
	 5.4 FileCompression.java
	 5.5 FileCrypto.java
	 5.6 FileInjection.java
	 5.7 Task.java

	 6. GUI design
	6.1 GUI layout
	6.2 Object component table

	 Appendix
	A. Bitmap file format

	##4_Software Test Document.pdf
	 1. Test design specification
	1.1 PasswordTestCase
	1.1.1 testPasswordConstrutor()
	1.1.2 testCloneBytes()
	1.1.3 testGetUniqueID()
	1.1.4 testIsValid()

	 1.2 MyFileTestCase
	1.2.1 testGetExtension()
	1.2.2 testGetParent()
	1.2.3 testGetParentFile()
	1.2.4 testRemoveExt()
	1.2.5 testRenameExt()
	1.2.6 testRenameTo()
	1.2.7 testTruncateName()

	 1.3 FileAccessTestCase
	1.3.1 testEOF()
	1.3.2 testInjectByte()
	1.3.3 testRetrieveByte()

	1.4 FileCompressionTestCase
	1.4.1 testZip()
	1.4.2 testUnzip()

	1.5 FileCryptoTestCase
	1.5.1 testEncrypt()
	1.5.2 testDecrypt()

	1.6 FileInjectionTestCase
	1.6.1 testGetMaxLength()
	1.6.2 testGetStartPosition()
	1.6.3 testGetNextPosition()
	1.6.4 testCanInject()
	1.6.5 testHasInject()

	1.7 TaskTestCase
	1.7.1 testInjectRetrieve()

	2. Test procedure
	2.1 Unit testing
	2.2 System and Regression test
	2.3 Acceptance test

	 3. Test result
	3.1 PasswordTestCase
	 3.2 MyFileTestCase
	 3.3 FileAccessTestCase
	3.4 FileCompressionTestCase
	3.5 FileCryptoTestCase
	 3.6 FileInjectionTestCase
	3.7 TaskTestCase

	4. Test summary

	##5_User manual.pdf
	 Preface
	1. Introduction
	2. Requirement
	3. Installation
	4. Executing the application
	4.1 Running the application
	 4.2 Injecting a file
	4.3 Retrieving a hidden data file
	 Troubleshooting/FAQ
	Contact

